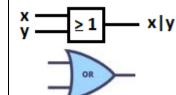
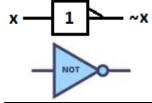

Algèbre de Boole

I Les opérations fondamentales



X	y	x&y
0	0	0
0	1	0
1	0	0
1	1	1

X	у	x&y
F	F	F
F	V	F
V	F	F
V	V	V


Disjonction or | (le ou des maths)

X	у	x y
0	0	0
0	1	1
1	0	1
1	1	1

X	у	x y
F	F	F
F	V	V
V	F	V
V	V	V

Négation not \sim (le non)

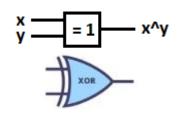
X	~X
0	1
1	0

X	~X
F	V
V	F

Vous remarquerez le <u>caractère séquentiel</u> de la conjonction et de la disjonction. C'est-à-dire :

Pour la conjonction x&y, si x n'est pas vérifié, il n'est pas utile de regarder y. Le résultat est Faux.

Pour la disjonction x|y, si x est vérifié, il n'est pas utile de regarder y. Le résultat est Vrai.


II Les lois de l'algèbre de Boole

Propriétés	Signification		
Commutativité	x y = y x	et	x&y = y&x
Associativité	x (y z) = (x y) z	et	x&(y&z) = (x&y)&z
Distributivité	x&(y z) = (x&y) (x&z)	et	x (y&z) = (x y)&(x z)
Elément neutre	x F = x	et	x&V = x
Elément absorbant	x&F = F		
Involution	$\sim (\sim x) = x$		
Tiers-exclus	$\sim x x = V$		
Non-contradiction	$\sim x \& x = F$		
Idempotence	x&x = x	et	$\mathbf{x} \mathbf{x} = \mathbf{x}$
Lois De Morgan	$\sim (x y) = \sim x \& \sim y$	et	$\sim (x\&y) = \sim x \mid \sim y$

III Une fonction composée

Disjonction exclusive xor ^ (le ou du français, avoir 16 ans ou 17 ans)

$$x^y = (x\&\sim y) \mid (\sim x\&y)$$

X	у	x^y
0	0	0
0	1	1
1	0	1
1	1	0

X	у	x^y
F	F	F
F	V	V
V	F	V
V	V	F